Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240814.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240814-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240814.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240814.tar.gz
Algorithm Hash digest
SHA256 fdefc9991c2b7ac7213937177bd84931431bbd2c7ebf5bd53257a52d09438442
MD5 67e4192f97f9b5f3200f7cfa2ee5b229
BLAKE2b-256 d8e3c95f3c715803ce0aaf2560ce82e7db72fcda3dda9d0a3c4df6cc551c8542

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240814-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240814-py3-none-any.whl
Algorithm Hash digest
SHA256 51f4d6cafb29e39cd56c0d867d5103fc4cf1c3bdd20b57341319eefffbb8bc57
MD5 7c7a774829fe0f8ce08824277d852694
BLAKE2b-256 a1c11f24db565e84f2053fd3b3c46dd29814e923349019addc6a5b0f8b0a55ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page