Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240815.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240815-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240815.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240815.tar.gz
Algorithm Hash digest
SHA256 4a305dae2938bba097c520df154c41081c06d80028c5965e837fee2d259fff53
MD5 4ca2bba1f0a3e9716a37b74c71887ac9
BLAKE2b-256 e5a908693937b9be7b365fd8bb3784c6e1db477bd8dd8b21d8e7f7317db74e25

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240815-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240815-py3-none-any.whl
Algorithm Hash digest
SHA256 fc9c4c6e681003227d5d93d0560afe9077851d7d6b001e8c6fd5ee1e58dedcbb
MD5 7808ddd276203f3e20be60a265fd5b11
BLAKE2b-256 c02d8ba286158152794ea00e4835c8cfca616d6a871c383a46a9230561107240

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page