Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240816.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240816-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240816.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240816.tar.gz
Algorithm Hash digest
SHA256 e91b01d61fa7f0f59e8a48818b6e51a1f5fc6601b93ace61f3dc16ac4e516c3d
MD5 cd029c638b6add898eeab912036a8103
BLAKE2b-256 7f3f77f19647caea7ac3f2260d44bf6176a17c5f3af417cd896135dae7f69bfd

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240816-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240816-py3-none-any.whl
Algorithm Hash digest
SHA256 3cbf3a474900f906c8a79f1f8b7af24a5927a5b266c707fe3cdb91caa3a0d6f1
MD5 5a5521a9508e0c54afda7ef9bc0a7bae
BLAKE2b-256 b921d5f208f54d0730f986345870ad9913f6540e43f401f508f002e1da2ddf7a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page