Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240817.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240817-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240817.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240817.tar.gz
Algorithm Hash digest
SHA256 39169be4c0bcdb7b8888f1247fc1b3915dadf0dc84c42b8b5bf8efc093e4105a
MD5 8b188a15e00d404eea19b09ea28c999f
BLAKE2b-256 2090de6d6db8e8713f74dee414fbaf3c9e59e1197f32f2f33234c9219f0d07f1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240817-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240817-py3-none-any.whl
Algorithm Hash digest
SHA256 99f953a8b6ee1cd32df74f7d57e0e913979dd7f84203ce3368afc1ef795a61c2
MD5 97d468ae90d4497d25752c2695ef295f
BLAKE2b-256 5ee65178958a851ceecd336a515ef7d639c8a114a7327b0ae4229f880a710241

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page