Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240818.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240818-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240818.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240818.tar.gz
Algorithm Hash digest
SHA256 bbf2876a38b6ebf0d9ac72a0e185e88df5e30709b0ee9430cdde92196e6a5d0f
MD5 9339a2add3b7ef5ee18fd8769d5d830b
BLAKE2b-256 9d1d21265ff4cee6d26da4acf8ba283cab0d5345db9a436f68ca9e1d982f1ada

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240818-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240818-py3-none-any.whl
Algorithm Hash digest
SHA256 1de9b2a21dfc1441c9ac4b06c10f77d046823aad277d8bf0ec61a9573f0535b4
MD5 58499e987e5d21c2d0421a45d35193bd
BLAKE2b-256 45eb7fe12dfe7093443b85498c44dcbde47f7b1e0d0ec48f3aa0e326f9128f5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page