Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240819.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240819-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240819.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240819.tar.gz
Algorithm Hash digest
SHA256 709606138ee084e681ea2029e39393fba66465a273ba89c605da13ae19950992
MD5 25e87b8ac060d5affc3c1362727d5415
BLAKE2b-256 45004f0f24c0b635cc6c0cad81b353d14e1b992028d35f659c25378b3fe6efb8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240819-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240819-py3-none-any.whl
Algorithm Hash digest
SHA256 f2926831bbda3992c310c747b4f04f63d75bd5cab19d178e06d6de048ef559b1
MD5 2f7ace9f0883afa9d922ee747759e4cb
BLAKE2b-256 e61c2e22c79a301a4e74249d19840d0b1f3dc426f8a87ed35de3af7c2b21f48e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page