Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240820.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240820-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240820.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240820.tar.gz
Algorithm Hash digest
SHA256 188cb3d7bf5c432cec47dd9eac7b6e2332c2f4befd4f3422565197000456e042
MD5 2be54460b39792fc5a1fa3e748a83631
BLAKE2b-256 ab77aff19a61df8e5893739cdfd55adf136d3192b740e27abb09ebf2ece35ad0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240820-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240820-py3-none-any.whl
Algorithm Hash digest
SHA256 d133e30b1bb3d4b4bd339a67c069c9e12134038fb2d7a85ed919d606ba9744dd
MD5 552bd4d601ab769ee7296a2b1df9315c
BLAKE2b-256 88979db40a7fdca43cae7a0875fae5db73c4e7643733d58146406e701d98c47b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page