Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240821.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240821-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240821.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240821.tar.gz
Algorithm Hash digest
SHA256 c9cfbde142ec9a9397aa7b8081aa1605e3bf0b85b94713350579fcc004c13976
MD5 df01f0cca474a5ad3b152495409b4b31
BLAKE2b-256 0325cca3618c571090f6d87ee68b3e355a0d362997cf67d0e48e481c70bdabd6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240821-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240821-py3-none-any.whl
Algorithm Hash digest
SHA256 f115ee1da4ace1988db1b686bc2d6cc7527564306b8663745c00913dd0ee91f2
MD5 856c221ca176da63de354d5bc13327fa
BLAKE2b-256 99046df683f72b040ce119af76e57e80c2910617639b4c58874ca6481c279da6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page