Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240822.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240822-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240822.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240822.tar.gz
Algorithm Hash digest
SHA256 4bf5f120ae17703d6d102bdc2b46a2ee5bc0695a83f581160635dd95d20a8617
MD5 92936c3557074da82af999451c49d392
BLAKE2b-256 a9ac70ede54a5189f3c022115759842f53af96b5199c9351d81189601380294a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240822-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240822-py3-none-any.whl
Algorithm Hash digest
SHA256 fcc743e47bdfd58c4c0cfa843dd12c7e5387a4e7362b77f51568c9eb154777f6
MD5 24bb1bbdff769e3e8d3cd9d403ff1c10
BLAKE2b-256 477d1613c0281d7405b1a6d06cceb27cb478fb0558dc8597d38f188116d4906c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page