Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240825.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240825-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240825.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240825.tar.gz
Algorithm Hash digest
SHA256 e3f5c740d24c395c911144101f9fc80b8ef6c5a211bf422464956079de23bdf6
MD5 4ac8bbe24b77c497f551eddcfada1f9d
BLAKE2b-256 6a26b9d0b01738f58d5b3c19c61572eaf9c0b17cfa5956e27802e58c5112b581

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240825-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240825-py3-none-any.whl
Algorithm Hash digest
SHA256 bfba15d9d7373085ee823117d186a89749970836363ea4d7e95446ca2734c97f
MD5 c21aaa669f353f7be5bbd3e92f54de48
BLAKE2b-256 2cd41c5b44db18be8ad6e6b5ceb23c4a3ffddb20724dace6e180a930464572a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page