Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240826.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240826-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240826.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240826.tar.gz
Algorithm Hash digest
SHA256 62a7da36d5cd9094f10911f803ea2b8d6049db797f1bf4446aeccce70ccaee5e
MD5 492c0e8db593e0b8183fd3a3722fec01
BLAKE2b-256 bbb0d12b9826d1eeaedd6ef1670102f1df9fb09cbc3638d8e4c16724afbd5c87

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240826-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240826-py3-none-any.whl
Algorithm Hash digest
SHA256 62462ce962a583fcd1826a9f99cfc09f35585645666288c67b21addd4974a67f
MD5 5cf074c9888e6f9ace9e6e83e2500f12
BLAKE2b-256 02e3374cb6744171d745c40bc06b09a3f5f637e95262fe127a66a18bd277e6f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page