Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240827.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240827-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240827.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240827.tar.gz
Algorithm Hash digest
SHA256 6457ebba5d725dd6f2ea327ae1dbecc5fa8826a2cf5ed37418b58a10fdee4933
MD5 1b09b4caf72e458c707a7c2fee8634f6
BLAKE2b-256 1f29d92813038ec1d262a9fd61e330488c694aa226225bdf47e052e807699702

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240827-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240827-py3-none-any.whl
Algorithm Hash digest
SHA256 621ee0682ba9deeea654a62b20718e25738e780460eb69a6ab34013c3663439d
MD5 7e7801728249a36a467d9d0f4005ced9
BLAKE2b-256 adc2c033a5e1a071caccb8a5727b6177cb481e5e620f8a2220732d9d0996a614

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page