Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240828.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240828-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240828.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240828.tar.gz
Algorithm Hash digest
SHA256 2ed6e39c0c62d4c9095f6992251c6fa4f1092257334c762b59e962fc73471dd6
MD5 c72e8eaae9a9f456fefc6eb304640bb8
BLAKE2b-256 6bde33a8803eec36084691d74600800aa4f1cf4ac7383595188330f72bcddab6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240828-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240828-py3-none-any.whl
Algorithm Hash digest
SHA256 b17f5b49259098d737c70ddcac92ba85a65ecb96e68d2e630386447c2de28b27
MD5 dfefd5606292f5a44cf0d50a3ffa688e
BLAKE2b-256 f306f96c27b9c6a5c1d4e572983cf2277aa0de2fb7ee27220c526d275d18f765

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page