Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240829.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240829-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240829.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240829.tar.gz
Algorithm Hash digest
SHA256 4445b8b832507c7ab28af1e76bd4b0782eb4fa3bb0e3228d4da0dd740c86a993
MD5 9637a717827df98f93687987ad6fb852
BLAKE2b-256 da907ad6070f40328c7a1ba557eeea322e9b5a3db5bf6d7cac8af11a6b85551e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240829-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240829-py3-none-any.whl
Algorithm Hash digest
SHA256 e85023cb3e2ecd0cda3cdaa21f0fe821b19cc2b691e68d85114709111d6012ee
MD5 ab5145c96d2038a553c23c487e7db1e4
BLAKE2b-256 1ece15b236c9289b1b138aeb15e32320d3ed3a30ab69742864279fe05b2bcc1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page