Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240830.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240830-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240830.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240830.tar.gz
Algorithm Hash digest
SHA256 b7152e33d0e9d0e512d09195e7722899ed63b3cc72f5bcfa8add3b580081ab2a
MD5 15d9ce4e1e709ec34443b70a32a2f414
BLAKE2b-256 3cf068d8701e55c36fe01958946632b0d4bb092ffe0c258c24bcb7014fee7e3f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240830-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240830-py3-none-any.whl
Algorithm Hash digest
SHA256 32cc2ed25bdfcdd156d3eb91f3338c196266f586d1692cf514b244cd1ecc36cc
MD5 f978c7885c39e63a54986d48dabf0c96
BLAKE2b-256 1c167ce51e64fcef50dd78c89214efee0cd6f4daea7656a562272a3680c2ac5d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page