Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240831.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240831-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240831.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240831.tar.gz
Algorithm Hash digest
SHA256 b7548ca0be9e4472929c1e73be100d4534532a49d22d99b63289a7410a4464e8
MD5 2834422e75fdb44fd897e5db0a5ea27c
BLAKE2b-256 c2d8fa844b12726c0e70806943d1c1ed14861425ae9d1cf5426050bf490dae9e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240831-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240831-py3-none-any.whl
Algorithm Hash digest
SHA256 1d9dea9dc4fedf2b2eab78e5dd1f342828fd8a2d3f4f986af160113d5726079f
MD5 dbb15c33d158155f00b524f1f10dd53f
BLAKE2b-256 7b75d5c55330b9828fa927ea30296c45a2ad4be8ae5ea34bfccfa7ab3146e4ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page