Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240901.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240901-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240901.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240901.tar.gz
Algorithm Hash digest
SHA256 4ef3f8705a626122d7ef9618f422806577c50a82a094ed514d8e04d75d738e3d
MD5 318ee01752d469e97a952b149d4479df
BLAKE2b-256 d23055c23e409aefa5f14b18593ac4be5b812456bb2fe516f9008ad1fac482d2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240901-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240901-py3-none-any.whl
Algorithm Hash digest
SHA256 a1073c83302ba221da2304d958e73f3df24b011aee6dd972dee54e08e1de2354
MD5 2bd31253c2335436c6b2c381f3ce44d7
BLAKE2b-256 047cef1097d9570ab8ee333a8f59831ed0558f26c94c284deb40de4b14376477

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page