Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240902.tar.gz (65.6 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240902-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240902.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240902.tar.gz
Algorithm Hash digest
SHA256 24bc4089e101528cb62886550fa7bea2796d36a9f2e9f6814bcc4de2f2492454
MD5 602336149a8990e5038cd8313ba16c47
BLAKE2b-256 5c4bc04daef16c6317f7130e79776419ded1ea09100dc14bf6adf76efa6ba39c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240902-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240902-py3-none-any.whl
Algorithm Hash digest
SHA256 95a08ebfccb9385a5e2c77c3f9a945dd7f03a1d816356ebba90fbf49f4335206
MD5 6796b40eea3c0b77ef07f06c638c44e1
BLAKE2b-256 a17c567b1ea0ca4b03c38d3ee6fd8311694cf415642dee260e14b68fd79d2d3d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page