Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240903.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240903-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240903.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240903.tar.gz
Algorithm Hash digest
SHA256 b042f2a80a5d7fb5c1a12c694fb4119ca25df647551869af0bc17962a4586ddc
MD5 c57586c8a3721c20d805d513e55f99f3
BLAKE2b-256 10d3a9bc00dc999ab562742f1e9804114adb7a5c58293d94ed254b27a620fbfd

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240903-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240903-py3-none-any.whl
Algorithm Hash digest
SHA256 1ccb752cfad73c6646e1ebab274d9ec7ad92e9254a89de15e8108c27c47e5b99
MD5 f8f895f9e33e0f81afb9dee7f8a73c42
BLAKE2b-256 dc2b0c860b676fd8af4907b0f0f4535c7285b32c6f1e3ce4b1c223686b7c2eea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page