Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240904.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240904-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240904.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240904.tar.gz
Algorithm Hash digest
SHA256 9646e1dfbf54c52e547e3e0e8da143913d8c86e0058c27aa2a6955239873944b
MD5 00825df06d4490637631a67752bc9cdb
BLAKE2b-256 588cd7767028a32b664f16dcf618ded43eee54479dc61df1ffe96f720e631a22

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240904-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240904-py3-none-any.whl
Algorithm Hash digest
SHA256 3b5de23a30a834cfd0e3323adf23c0313f1c9e706e50cd74c18aef07fbc7f5f6
MD5 46e816e966b9afdeaecad368ad092d96
BLAKE2b-256 1716a1fe2eedac0107f7be89d7c6c8fa5016128a7954d108b0650825762d9b7a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page