Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240905.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240905-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240905.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240905.tar.gz
Algorithm Hash digest
SHA256 2051e9053d041323e2bd439933ca9fa1bb31bbfb4a3c6453f5a239c453e8d492
MD5 f8425d4aa8efc937ecf90423ffa1ccf8
BLAKE2b-256 a93aa52a8319dc354a81ecc13988ad2ed88065b48cd0880525d52a4e78a8285f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240905-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240905-py3-none-any.whl
Algorithm Hash digest
SHA256 483a896a501cb4dca8e58ba3a15207f295ba30f4158f06f1cf792945db4744f1
MD5 398dd803b1600bc6fe6009efc5c106f2
BLAKE2b-256 c48f057b97a5b392fc709efb2d086db2c0bf9c25de8a0a1dccb9b22e350adf4f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page