Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240907.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240907-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240907.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240907.tar.gz
Algorithm Hash digest
SHA256 c4a43c6d04b740c3f7c085bcce401a88e758c55d8748bcb800b7b4d6e8dfc851
MD5 355fe0fbc607af04f41dce5ac848a173
BLAKE2b-256 0138e5dce5db8831879022ebcc8a04cef4017f65a37776fa60789556a6bc9a0f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240907-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240907-py3-none-any.whl
Algorithm Hash digest
SHA256 b31312356eafa10befe9e4b8dcf1b8a14f9e1ebbdbba6e8cea4d01d56cd2a316
MD5 4351e414e6bc1ee29b4124304a20bfa9
BLAKE2b-256 1af125a35524d534c72496cb2af59313a485d164c4b6f0768b865289a92c695e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page