Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240908.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240908-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240908.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240908.tar.gz
Algorithm Hash digest
SHA256 3f419af019b458470d3ac21b40b13108e8a7ea1f8f8100d42b7c17b726990432
MD5 c25100eb396dab12488fef9015696aee
BLAKE2b-256 0f142c57992a6659ee698c9e2df41f8e7e9891d4b3b5eb09b92a513bee5c33a8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240908-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240908-py3-none-any.whl
Algorithm Hash digest
SHA256 051b4435d763d45c52bf65146d3d67a5c3d0d5da543dfce202ae88a6e5f9e13f
MD5 307fbfee8d22740ff55cef294e7b0b16
BLAKE2b-256 a183221c6929a9f0b29534cfd3b99b942626a30b65dab3e48038c44156227755

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page