Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240909.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240909-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240909.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240909.tar.gz
Algorithm Hash digest
SHA256 15b10dc4f6874cc9745439a4502c2fe2ae822c593939bad0d0cbe83ed5e796b0
MD5 8d565e118ba2f232d04e96de43bba5a2
BLAKE2b-256 5c1527bb52cccd2b44627148a68da75e2e5442123c11e857ad539c99b36c9beb

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240909-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240909-py3-none-any.whl
Algorithm Hash digest
SHA256 a90e531966566b4d1d550a8a08d34e62b1b689b93bfca672d09580a161d29708
MD5 d9942f4f61c221faf0d1fcf6a7596a95
BLAKE2b-256 4bf9b1a80878a01e88a93263a01425733d92d3caf52ec2e55cae0951dd6636be

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page