Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240910.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240910-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240910.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240910.tar.gz
Algorithm Hash digest
SHA256 9de4e5b30c8e3bd015294e148d6e2af45a3cd077107765f4313434850b0d4660
MD5 b1fe78a725b818edf9774383db451f3c
BLAKE2b-256 233785eb6da5daf972a6d69fd526305ea4d84fb188d0671d7da92b39c8ac3d9f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240910-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240910-py3-none-any.whl
Algorithm Hash digest
SHA256 747000ba55a13b379a03f06a379268e7d4f7278bde2e1c653714d38c28fe0ce4
MD5 f0877a66d1c31a0fca941fff76f7c2e3
BLAKE2b-256 880da79b7c4b2e8c0613a467ff0ba16cec76b722288f9939e520179a3704c1c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page