Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240911.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240911-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240911.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240911.tar.gz
Algorithm Hash digest
SHA256 8cfce3f14c952b6bccf937d66a3d0a8519d83e48679dac7d2c696da0a233b587
MD5 02c729303591bacabdb8e44e9cfb2d23
BLAKE2b-256 ad05cbc5f898e220dbad23a058277395b7751217ad4197fec33a8228020ce2b3

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240911-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240911-py3-none-any.whl
Algorithm Hash digest
SHA256 8005a5fd3186b1b3d1ecbc79630b207439d7183ce0b4167ab04726aad140f4c5
MD5 24eeaadb9fad026d9f46d5ea23789fc9
BLAKE2b-256 a9a69c65c3937adc026441e505497d97cbb4ae9909aaf6f5e0d7461c4f9e4100

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page