Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240912.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240912-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240912.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240912.tar.gz
Algorithm Hash digest
SHA256 e405d448d5fa2c456e4a576ed178988f4b73d5ed2cd7dd90228bf1c55411129f
MD5 bc018df6ec999872335b9a7e227ae27d
BLAKE2b-256 ab3a739e134ca951672d8ece10406d9f6cf528b0ff2602a89191b4bbe04802f9

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240912-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240912-py3-none-any.whl
Algorithm Hash digest
SHA256 d2deca45689afb691f17ee0ca8a77da9fac0aa517ece8aa6fe06fabc0f18c491
MD5 f3f017939d278d393361386773f425f5
BLAKE2b-256 5598f8f98f05b821dbc0baf309d75e2be80164496cc5c628b5e9c03cb00d131e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page