Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240913.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240913-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240913.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240913.tar.gz
Algorithm Hash digest
SHA256 825e44bda1b3fe6a670045d85782b9552d8347e6ff99c987983a2fb3d500dda3
MD5 2e4eba7c45f41915ba239a2c1fa2a0b3
BLAKE2b-256 e7d5ab222ee106880e82f3fce658579fd66aac4fff2f8032d2f810b1c9302154

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240913-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240913-py3-none-any.whl
Algorithm Hash digest
SHA256 69880329f14c1aa5b7d61c968f27bac1a8428f7097ce586735d8fa00307aec4b
MD5 bf73ece62e26f04f10487aba33b7ece4
BLAKE2b-256 3331ed182bb285cc36da21f3817be94f0846f414afdacf13d230e618d0fb97dc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page