Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240914.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240914-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240914.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240914.tar.gz
Algorithm Hash digest
SHA256 1e6d434ce233ef5bd0840146c54aa2934d05728bff1325c6b087bbd4d550166b
MD5 b09a17a6169b08bfd7ac1d47b4810050
BLAKE2b-256 af382832ab7fc6ed26214e3e92825ddfdafb42397189b56531e178d2e45f81fc

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240914-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240914-py3-none-any.whl
Algorithm Hash digest
SHA256 4d392826f4247539a8379f1dfae0ac5c14090dac7719e2bc0f51c0ea08098166
MD5 39d8f2e6d5610cefaec3a0ef4f3d79e3
BLAKE2b-256 a60c099c65e2d43dfa06113905ddb552e8435189bc51ab86f9d933ea9ebead6b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page