Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240915.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240915-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240915.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240915.tar.gz
Algorithm Hash digest
SHA256 ac31b0a0b37419d0be49f889d58cf651c635b57c49cc6195cee357f5d9277bd9
MD5 d1b87cb11cdf021fb3a1983eb3f51eb4
BLAKE2b-256 be63070a0172d8562a7b972687f4b7d83057db5812a1277cd33f92b9207a16e8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240915-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240915-py3-none-any.whl
Algorithm Hash digest
SHA256 79448cd6c505626c0f734c35accca1e2cc469eeafe5ca1318b1e46a6bd0dace5
MD5 7778df5d2b403af07657db148dcb1ad5
BLAKE2b-256 f9454970f457b68172216c5f93a35ed973ece7ba0bf88d7b5f8c8afaf0136130

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page