Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240916.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240916-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240916.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240916.tar.gz
Algorithm Hash digest
SHA256 27b7aadaba52ba1b509d597e94914cd9aae223e43211856eec6cdecbbe5fd520
MD5 7ef477d513280018f04a210b1a97df42
BLAKE2b-256 4e14e6227de9a5baf2b1dbec9af003ee1a034eca7afc2ae53fc449ac16d97169

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240916-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240916-py3-none-any.whl
Algorithm Hash digest
SHA256 387359ba31baf447007b2f617d919ce30036dc11cc264b03d953eb859d4cedd9
MD5 d87ae04c80e69d67caa8e2ba3e729fdd
BLAKE2b-256 9dd76776c539737c5c20a45e4f1e5a7a8ebaece61c81b95108ebfe8ad8f2cbcd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page