Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240918.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240918-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240918.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240918.tar.gz
Algorithm Hash digest
SHA256 8b01bc105891a24366555274a76e16cd13c0e1f241b2d2a1249bdf3581a7a673
MD5 ba43a41040c73289abf372e2132aed2b
BLAKE2b-256 d23f5da1b95dc485b9292f86b37294c53df33a6fa69b998e0f582eca91e79023

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240918-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240918-py3-none-any.whl
Algorithm Hash digest
SHA256 7e62d1d92cb795e3b4335ac3b9da0d54f42021ecd88cafe44abfe00f40f78c2a
MD5 c43613d92a002227ed88d99813187d7f
BLAKE2b-256 6f1bc4a4bf2772495466c634a5351999e5de8723ad60ebe4d439a1774ebe4b37

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page