Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.0b20240919.tar.gz (65.5 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.0b20240919-py3-none-any.whl (92.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.0b20240919.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240919.tar.gz
Algorithm Hash digest
SHA256 4a45a5c790a7598279d8d2debf164bb190f71d46b657a4c626ddffb5668c9fd9
MD5 28e80a440b8cf3fa7a9fa8711e543bbc
BLAKE2b-256 aed09fd741effd06f3c2f34f2bf51568030801dd6ff8d8ef2321da4572f2c064

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.0b20240919-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.0b20240919-py3-none-any.whl
Algorithm Hash digest
SHA256 adda42b828b5c5030219e8cc563d5ac4af178ff1e02648b3345ec6e76c72a91d
MD5 1b609794ac4556c5924f5f54e5231879
BLAKE2b-256 c91fc518689b315574ce9e8c45de04e612cd19bfc28b00251d674fd7e32a1d09

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page