Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20240920.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20240920-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20240920.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240920.tar.gz
Algorithm Hash digest
SHA256 901224e0f525daed93d8d70edfea68fcd95923c00e3b80908cadb7c9955e4e98
MD5 966a3fd88b01a72dfbe9528f9210f555
BLAKE2b-256 8254f070594e9c56c9d8c44dc917eb88770d32e9bb836e870626b85cbe560605

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20240920-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240920-py3-none-any.whl
Algorithm Hash digest
SHA256 52bb52515a62ac3f297e5ae60d8b114cfc062109c821c1249270e8386a01f2a5
MD5 212b616bf16862f223789f5b18ceafcb
BLAKE2b-256 1dc9705009b5edf56f03224d4ef27e1acfa9fd11b2b12a4fc81f21aaf9f49a8a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page