Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20240922.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20240922-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20240922.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240922.tar.gz
Algorithm Hash digest
SHA256 ce5dd0e64f61a492c82ea7c188b851326e761572229b00a629327c113a177beb
MD5 95764f673a1c0e831f1cd1a986cc3e9e
BLAKE2b-256 91293af086fb6002fbda4aced3f556c9216d6c8ea9b52491c0a8fd553d9932c2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20240922-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240922-py3-none-any.whl
Algorithm Hash digest
SHA256 962bdbc147079658609a4f67fa918e1a38d69d21c219ef8dd326a8840e2c9733
MD5 ae0a67877b16804b7d7081b569965213
BLAKE2b-256 79a0c09138ac87ce0319dd74a81815e428db4d03e2ac09a5898024d6d24e10a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page