Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20240923.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20240923-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20240923.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240923.tar.gz
Algorithm Hash digest
SHA256 89c32376502e1f6a767f00f26fddd0e6e94ca6758177fe64f5f6d64ab03bafd0
MD5 b073397fcb337a510708297fca95281e
BLAKE2b-256 18af3a7d3c0c632e06f4d206e92987202261839b09a429fc04f2cf57daca62d2

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20240923-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240923-py3-none-any.whl
Algorithm Hash digest
SHA256 541adaae32101ad5d9ac56426a63c168b6d1f41e879a786b73c672af84cf8a0f
MD5 24f2a592f6d26647b41214a1ec342b43
BLAKE2b-256 98a1c6676b9a516b4f1108e1a0fe8234bb5bd93e773f7b6739e61b97fa3dd0a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page