Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20240924.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20240924-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20240924.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240924.tar.gz
Algorithm Hash digest
SHA256 7eef099f7c7a3418a9ea02917cec165c9dcbf9b32a4431f6bc568cfd18b9039e
MD5 2336239f796276c81166786261e2a5bd
BLAKE2b-256 00cbbf2f3105069071b72aa5fa7532f8b03b936d57103601ab9f0982496623e8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20240924-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240924-py3-none-any.whl
Algorithm Hash digest
SHA256 185a5c21d66274cc4170bbbdf3301f7b3bc5f40f0c769339181281bbd40e7921
MD5 c7a9cded94cd79869a8dece6535e8123
BLAKE2b-256 541aedb70eadec72b48e8fe8ef98c81ddf936433c52e9e6d7f5a5f791bbac8ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page