Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20240925.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20240925-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20240925.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240925.tar.gz
Algorithm Hash digest
SHA256 481b8a487b0cf659cf36ca5d7956862b45df560dfb47994b44f085377abf8f6f
MD5 f1c2b3a0a5f37e36a7a6312a5db21eda
BLAKE2b-256 01f3583b203ee6fb13fe0d7cf4adc9b9b89f708c1960e36406c940312c8028eb

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20240925-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240925-py3-none-any.whl
Algorithm Hash digest
SHA256 2bdcd33fd2ee6c341c6646cd78d037fe4a6c16cbb17d4bc869f4edccd15a98ad
MD5 7e9b3bee34c7fa9f7559bc6035024607
BLAKE2b-256 f77dbd7e0b176af3ab01f22fd73262e8eb5fcbf3ae5222717d1c0a3af7cb75c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page