Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20240926.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20240926-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20240926.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240926.tar.gz
Algorithm Hash digest
SHA256 9235e3455bd2cecb5246f8e17a24f1b727c52ce02edc2c4ad7a38fa90cf315e1
MD5 5735366ff70466bac81bbf5de75c1f27
BLAKE2b-256 deb211332330cea0df5b24c9e17ea07a88a16ce0510ae0346e3cc963023d271e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20240926-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240926-py3-none-any.whl
Algorithm Hash digest
SHA256 bf7a77b60db1a7d425064eb9fc2167e49b6fc5988d88f9d71a3277ba63d29e98
MD5 3b83286aec3b0225b104f9cf1356036f
BLAKE2b-256 ef0c3ae60d3ad0c1d9b45dd43f5ec20ff0085ff44b11d8004a05bb23412e1c40

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page