Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20240927.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20240927-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20240927.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240927.tar.gz
Algorithm Hash digest
SHA256 b0557505c5abab3adc1c9c6bfcdb7952ee2e5ec448a05f271adcefa22c8dae33
MD5 b38cbc5898547216cfc2b70e1e085c0d
BLAKE2b-256 28d53f60590cccc5d3c3b17f03d69cc1889d6f18b9e6d14c5a2da32b08fc4c59

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20240927-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240927-py3-none-any.whl
Algorithm Hash digest
SHA256 34f8802328b3fd7643ab17bff04a624dad0c3f3e22ae69e4ab7d084c975fb3dc
MD5 37162fe0cca05636ab006e0c2a9ec9af
BLAKE2b-256 27964e90c521ef99edfee2489ff8982e495081a7cd02d7ea6274740f917e9b8c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page