Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20240928.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20240928-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20240928.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240928.tar.gz
Algorithm Hash digest
SHA256 5a6dff1de142702bb8924c3660d36eec62764228905c543deb5fa7c24fb7eed4
MD5 94b70fbdcbf215ad9476b65a8e380340
BLAKE2b-256 48ba2e90673b8b928e85987cd493d4c4a0e303a39920a7999f1f78d3990a26d5

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20240928-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240928-py3-none-any.whl
Algorithm Hash digest
SHA256 5e177c8b22576c8ead97cf77b8e1715e03b83b1a91154255769d54db28ef494d
MD5 179d3b53f6d349fc1a7cea47e0033ed8
BLAKE2b-256 8a6b7c36a9c717ecc15a1b567dc99a642e2537d8ecba64ef6ccf06de8fc6f9eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page