Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20240929.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20240929-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20240929.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240929.tar.gz
Algorithm Hash digest
SHA256 356a1b005a66eff99748b4b27753525f142ba1e695dd9f700eadedf837d49fd0
MD5 67aacb2a2e6bb50bfc1ac117430c68f1
BLAKE2b-256 4464450bc046519aa2ed650c009c90d60aee798a00e000202eb19b8d128b9566

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20240929-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240929-py3-none-any.whl
Algorithm Hash digest
SHA256 9bf87a5629c487ad5ae87684884e0716807ff1b71bdf4e231b1c24e6970c1efb
MD5 92f08b3f1a721a7fe54860f2e2b174b2
BLAKE2b-256 12f5481f26a463d704d126645376733ce97d61deb41246b4a2e5a1cc3a6b7fb6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page