Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20240930.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20240930-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20240930.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240930.tar.gz
Algorithm Hash digest
SHA256 3e25248c5a42615be3bc0079142e1870ce82fe5162482a25798c357750d1781e
MD5 1ea063f7b4e90464632d6da27d9ab45d
BLAKE2b-256 7a6f78a89bceeb1347d5b5d98da465cc25deabdbadc1e564f758f887650e18d6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20240930-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20240930-py3-none-any.whl
Algorithm Hash digest
SHA256 c9e4621d8f33f4ba8044cbdbdd5844c027573ab2a6a0ef2c35bc9da7bea6f0ea
MD5 29ec693ff72132bac390449408d2013a
BLAKE2b-256 6ebf9848358d512ffd24287c8cba92b17fea63f86e8497720c0771fa2c5f2a78

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page