Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241001.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241001-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241001.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241001.tar.gz
Algorithm Hash digest
SHA256 f56d0ff10f9fdffe0d9e8acaedfa304491bcba5585a6a5008cbd57ba0dfb4df4
MD5 6bd692f0ba3821b2e811dbc240f7c311
BLAKE2b-256 d832780ba47a462e270a4f7efdad56c6526c7316e1aecb8252541e78228c5917

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241001-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241001-py3-none-any.whl
Algorithm Hash digest
SHA256 76630897f756c876635fbe38f1d2dcefbb184907cff1278d2953f6ecbfdb8266
MD5 6e215b69f2598da24cb0029585429d2d
BLAKE2b-256 8b213a6a8c18d67a3a83d4ccf78099f536abcaa37eaea879030f3c10de69f313

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page