Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241002.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241002-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241002.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241002.tar.gz
Algorithm Hash digest
SHA256 6477c714053db96e1e4f9acd8334cd93f5400d48179fdb93be209663f12fcb21
MD5 a74e9f5c6568168b3819f82fc8bd00fe
BLAKE2b-256 656ad9a9932183c0b23b82b78bb6e759c3bcddfc06deb42d3eaa94e2ba699ca8

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241002-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241002-py3-none-any.whl
Algorithm Hash digest
SHA256 fd2db5c00e44e68a4b16181634c1f941a701bf1e633689a94562751aece21584
MD5 7646acb85c830c145e2a70c9d82c99df
BLAKE2b-256 96f93a34a75a571a350698edb36d7fcfc919f79b1fa331a3eddd61387fe2e2ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page