Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241003.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241003-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241003.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241003.tar.gz
Algorithm Hash digest
SHA256 81fa069f24ac53b64c405b08d047e159cf08327f294977adee0184f51c55c9a0
MD5 5328b164a9ac3dd630113624b302152d
BLAKE2b-256 1a836f48a6ab371a29afd5827049376c62cc1b0f3c551b49d898ed46d5d4dd09

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241003-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241003-py3-none-any.whl
Algorithm Hash digest
SHA256 df7d019fd77c75cf35f6f0f20dbcdf81cf948e149d8b87421e7a53f625306d8b
MD5 f27b111a15b0d7ef755382cec0222829
BLAKE2b-256 91b9b4d2724b52cf2fac9f5222d719c281bbf5e897dada88695b78063a88f50f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page