Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241004.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241004-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241004.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241004.tar.gz
Algorithm Hash digest
SHA256 96c89b9175bde4ab733cb3ca18bb37eb324807d5f4dbf023adaf3dfbf8b084f8
MD5 ed61f631d3521c3256ea81ed0cad7dc4
BLAKE2b-256 e1b7baf79941795f98aeb57843942b90d029a1794e333025c647cd7dd20501ef

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241004-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241004-py3-none-any.whl
Algorithm Hash digest
SHA256 f0787b6d028dd516093cca99d30a2d21083a673eaaeeac09a345857acc60c0ca
MD5 8c8af3d3ad2e07cb62b25e2209dc1914
BLAKE2b-256 e5177f7f0fb0607e7cfffaaa123e71eec4f7ac360faac4e7c0f773d63e20f1cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page