Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241005.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241005-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241005.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241005.tar.gz
Algorithm Hash digest
SHA256 26c3281e1914e0d96d90d2f521fd804548f0ff5d270c37b13ee15be462f8f26e
MD5 50411ad93d2e64e8592af243ddd08a12
BLAKE2b-256 6a1645783a02eb7aaca6d99467d1042ce4116e25c92fa99f647fbd97bea03b2e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241005-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241005-py3-none-any.whl
Algorithm Hash digest
SHA256 067ece9d89607e80a8c5ad6ce2518e1960b854f0d4680edf75b1d5192723529a
MD5 3ca621995ed9fc431d1bcd36af20cae9
BLAKE2b-256 4696b72b3dfb109bf0be39facf72cc9be75a05582a3fa33763289b7d55f8984b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page