Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241006.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241006-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241006.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241006.tar.gz
Algorithm Hash digest
SHA256 c0642cf6bb1df9047fc52533c026e5f4a7d0f3c3a4f4e86780e937a1544c96f6
MD5 31f812ae0bca26b20aa273b0ceefd9fb
BLAKE2b-256 5f6705a08d415ee1a328c51faefdfbc6394c991bacbbfece96a54fbd672d6893

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241006-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241006-py3-none-any.whl
Algorithm Hash digest
SHA256 30ac1de1ddf14a02a87d2d76fa69ac3459159c732cda653c2608d688e3a596e1
MD5 42b10aab258925f4346b39b36c660457
BLAKE2b-256 67dbafe9a47cb669569b24c8d11390eaf958965c52e1ab9a600f27d397ea6d49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page