Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud Documentation | AutoGluon Documentation

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Installation

pip install -U pip
pip install -U setuptools wheel
pip install autogluon.cloud

Example

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
test_data.drop(columns=['class'], inplace=True)
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.4.1b20241007.tar.gz (66.3 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.4.1b20241007-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.4.1b20241007.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241007.tar.gz
Algorithm Hash digest
SHA256 d86a49f1c4d0ffaa4d6c184f553755745d92e3c2c5dc027ab7ad8cacb1ce2872
MD5 ef6436c48629eeebf76b5ba80921bd36
BLAKE2b-256 5e74e83835a5b5fceb8e1bac28f7fba806974085c3899ad301e2786dcd2060a4

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.4.1b20241007-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.4.1b20241007-py3-none-any.whl
Algorithm Hash digest
SHA256 92a81bdd2a92b6cff8184597f1eb03b295c208c543c5e4bef04d04c8b0af308d
MD5 67bc34d323f2c06ae0db1b28e80043c7
BLAKE2b-256 ee3c83d00b541cd5f8eaff1873b5d17d164f31d7040a79ba48b57dfbc9b0c6bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page